
^^S5S£!ESK5SSS5K53BSH3Sa£S li"^.^.W.W-.^fl£.it-3A^.,>Srl^«tfi:iE

4. TITLE AND SUBTITLE . t ^ . , _
Neural Network Approach Towards Logic Testing and Design for Testability

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

our oer response, including the time for reviewing instructions, sea rent ng existing data sources,
;icn of information. Send comments regarding this burden estimate or any other aspect of this

P-JDIIC reaortmc buraen *or :n;s collection of information is estimated to average '
narherma 3nd maintaining tne data needed, and ccmoieting ana reviewing the.-cll^-..-.. - - -?- .^ ,TIC,^;<„^„
col Xn . "nforaation. inciting suggestions for reducing this ouraen. to Washington Headquarters Services. Directorate for information ODerati0rS ana Resorts 1215 Jefferson
Davts H^r-way. Suite '204. Arlington. JA 22202-4302. and to the Office of Management and Budget. Paperworx Reduction Probet ^0704-0138), Washington, uC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE

1 Aug 96
REPORT TYPE AND DATES COVERED

Final Technical Report (1 Feb 93 - 31 Jan 96)

6. AUTHOR(S)
Rai, Suresh

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Louisiana State University

in cnnvcnojur .MONITORING AGENCY NAME(S) AND AQORESSfFS)

}Air Force Office of Scientific Research
IllO Duncan Ave, Suite B115 ^~
«Bolling AFB, DC 20332-8080 \

.iPVLClVlr'N--"

5. FUNDING NUMBERS
F49620-93-1-0121

8. PERFORMING ORGANIZATION
REPORT NUMBER

Tech Report EE 96-08-001

i 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

19960813 167
1 2 z D: S T ?.: 3 ■J"

'Unlimited
BXTHOy STATEMENT K

Approved ioi Eubiic lelecuwi $

The report"considers the problemof applying neural network for logic testing and proposes an efficient method based on the
jhypemeural model. The conventional Hopfield network of N neurons describes only binary relations between neurons. With
Ithis model, gates having more than two inputs need hidden neurons. Even two inputs XOR and XNOR gates require fojir
iieurons; one extra than that required by most other gates. Inclusion of an additional neuron doubles the search space. Thus,
bnding a valid test set using Hopfield model is either increasingly hard or the network converges to an invalid solution. The
jproposed hyperneural model overcomes these difficulties by using an energy function that not only considers binary relations
Ibut also captures all higher order relations between N neurons. A C++ code, developed for hyperneural network (HNN)
jbased approach, is tested on a SUN SPARC 10/41 workstation for ISCAS '85 benchmark circuits and the results are
compared with those obtained from MODEM and FAN. We have also applied the hyperneural concept for redundancy
'identification and removal problem in combinatorial circuits. Results, obtained for benchmark circuits, compare well with

those given in the literature using conventional methods.

14. SUBJECT TERMS TT ,,-.*•
neural networks, hyperneural networks, Hopfield networks, logic tesüng

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified
\
*J$M /SiO-O1-230-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE] OF ABSTRACT

I Unclassified
i

Unclassified

15. NUMBER OF PAGES
11

16. PRICE CODE

20. LIMITATION OF ABSTRA!

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

«I

Air Force Office of Scientific Research grant F49620-93-1-0121

Grant duration: February 1, 1993 to January 31, 1996

(Final Report)

Report to the Air Force Office of Scientific Research

Neural Network Approach Towards Logic Testing and
Design for Testability

Suresh Rai

(504) 388-4832

suresh@ee.lsu.edu

Technical Report EE 96-08-001

Department of Electrical and Computer Engineering

Louisiana State University

Baton Rouge, La 70803

-J-iU-üJJailJUilll- H^MI^M"™^

ABSTRACT

The report considers the problem of applying neural network for logic testing and

proposes an efficient method based on the hyperneural model. The conventional Hopfield

network of TV neurons describes only binary relations between neurons. With this model, gates

having more than two inputs need hidden neurons. Even two inputs XOR and XNOR gates

require four neurons; one extra than that required by most other gates. Inclusion of an additional

neuron doubles the search space. Thus, finding a valid test set using Hopfield model is either

increasingly hard or the network converges to an invalid solution. The proposed hyperneural

model overcomes these difficulties by using an energy function that not only considers binary

relations but also captures all higher order relations between N neurons. A C++ code, developed

for hyperneural network (HNN) based approach, is tested on a SUN SPARC 10/41 workstation

for ISCAS'85 benchmark circuits and the results are compared with those obtained from

MODEM and FAN. We have also applied the hyperneural concept for redundancy identification

and removal problem in combinational circuits. Results, obtained for benchmark circuits,

compare well with those given in the literature using conventional methods.

INTRODUCTION

The ability to put large number of gates on a single chip of silicon offers great potential

for reducing power, increasing speed, and lowering the cost of digital circuits. These advantages

are, however, offset unless VLSI chips are economically tested. An obvious reason for testing a

chip coming off the manufacturing line is to see if it works. Testing, or more precisely, the

determination of what tests to apply to a particular device is a physical-design task requiring

computer aid. An automatic test pattern generation (ATPG) is characterized as a search problem

where the set of possible input vectors of a logic circuit is systematically searched until a test

pattern is found. Note that this problem is known to be AT-complete.

We have begun investigating the ATPG problem using neural network based models

because such models, described by a pseudo-Boolean quadratic function (called energy function),

offer the advantage of applying optimization techniques. In addition, the non-causal form of the

model allows the use of parallel processing for compute-intensive design automation tasks. By

non-causal we mean that underlying models tend to blur the distinction between the input and

output signals of logic elements. We also wanted to apply the method of our investigation for

redundancy identification and removal problem in logic circuits, a sub-task commonly needed in

synthesis problems. Besides the efforts of P. I., Suresh Rai, following graduate students helped

achieve the goals of the project: W. Deng, K. Biswas, H. L. Johnson, R. Parthasarathy, Mohan

D., Y. Liu, R. Jagdishan, A. Jagannnath, A. Bhosekar, A. Yellundur, and Xin Liao. While first

two students were directly supported on the grant, remaining other students contributed by

working on the topic or related issues as a part of their M.S. thesis requirements. A bibliography

at the end of this report compiles our research results so far on the topic.

TECHNIQUE AND RESULTS

Theory

We, first, started investigating binary and three-valued neural network (NN)

models proposed in the literature for ATPG problem. These methods use Hop field's NN model

or a variant of it to obtain an energy function for each 1- and 2-input gate (NOT, AND, OR,

NAND, NOR, XOR). A collection of such functions is called a basis set. In the basis set, most

two input gates require three neuron models. The XOR and XNOR gates, however, need four

neurons to describe them. Neural models for all other gates with more than two inputs are

constructed from the basis set by taking two inputs at a time. Since the underlying Hopfield

network of N neurons describes only binary relations between them, gates with more than two

inputs need hidden neurons to capture their functionality. Inclusion of an additional neuron in

the model doubles the search space. Thus, having n extra neurons means the search space is

H^H5B!HHHÖSÖ^H«!,!B5*

increased by 2n. This situation may lead to the problem of scaleability. It means with increasing

problem size the network becomes so big that simulation times are excessively long. Also,

because of the presence of state space explosion and non-linear nature of digital circuits, finding

a valid test set becomes increasingly hard. Alternatively, it may happen that the search may end

up in an invalid solution. An issue, relevant to this, is the reliability of result. Hopfield type

neural networks are found to be particularly useful for problems where solutions close to the

optimal are quite acceptable (character recognition, for example); in the test generation, a close

solution does not mean much — a vector is either a test or it is not. Another drawback of binary

and three-valued NN models stems from the fact that they do not consider buffers and fan out

lines. The basis set does not include any model for them; its 1-input NN list is limited to NOT

gate only. Most circuits have both fan out lines and buffers in their description.

The proposed hyperneural network approach generalizes the energy function to capture

binary and higher order relations among N neurons. A hypergraph is suggested to represent the

modified energy function of HNN model. To define the hyperneural network, we use a fully-

connected hypergraph Q-iV, £) consisting of a finite set Voi vertices and a multiset £c2 of

hyper edges to represent the modified energy function

E =
N i N

i -i,j

i * j

] N i N
~ ZTijkViVjVk -...-- I.Tij.jViVj...Vi (1)
J:i,j,k -i,j,...,l

i*j*k i*j*...*l

Here K is a constant, and N= \1A is the number of neurons in the network. Various 7s are the

weights associated with corresponding hyper edges. The elements of hyper edge es £ are called

its terminals. A hyper edge with two elements is also called an edge or two-terminal hyper edge

and represents binary relation between neurons in the hyperneural network; a hyper edge with

more than two terminals is sometimes called as multi-terminal hyper edge and depicts relations

involving multiple neurons. In equation (1), the N summation term corresponds to N groups of

hyper edges that have different number of terminals. The second summation term represents all

the two terminal edges in the network while the ith summation term reflects all the hyper edges

with / terminals. Let T,1 denote the set of all hyper edges with / terminals then equation (1) can

be rewritten as -
TV

_ E = K- 1/,-Vi- X I Te UV] (2)
ieV i = l eei1 jee

A hyper edge e is incident to the vertex v if vee. The degree of a vertex v is the number of hyper

edges incident to v. We note that the Hopfield model represents a fully connected 2-graph where

= -9 (3)

any neuron x connects any other neuron y, x ^ y, and {x, y) is an edge of the graph. Like

Hopfield network, we assume that the hypergraph representation of the hyperneural network is

free from self-loops (i.e., terms like 7 / / = 0) and the graph is undirected. Note, the quadratic

terms denoted by the expression within brackets in (1) are the same as Hopfield equation. By

allowing extra (iV-2) terms in (1), we introduce additional degrees of freedom at the cost of

complicating the energy landscape of Hopfield network. However, for the purpose of modeling

digital logic, the complicated energy landscape does not hurt because we deal with fixed weights

on hyper edges. The additional degree of freedom provides the advantage of scaleability. Unlike

Hopfield model, the HNN with N neurons can capture any relations between these N neurons.

For logic gates the weights can be obtained using the truth table of the block and applying

Mathematica to solve equation (1). To illustrate, we consider a 3-input OR gate. Assigning

energy function for the OR gate EQR = 0(1) for all the eight consistent (inconsistent) states of a

3-input OR gate, we get the 16 simultaneous equations listed in Table I which are solved for 16

unknowns as:
K = 0; /! = /2 = /3 = /4 =-7]2 =-7i3 =-T23 = Tl23 =-l ;

-7J4 = -T24 = -T34 = 7124 = 7} 34 = 7234 = ~71234

An EQR expression obtained using these parameters can be expressed as-

E0R = -(1-V4){2(l-VD(1-V2)(l-V3)-1} + (1-Vi)(l-V2)a-^) (4)
Figure 1 shows a hypergraph representation for EQR given in (3). Here circles denote vertices of

the hypergraph and dark triangles denote hyper edges with more than two terminals.

While we can find the energy function for all types of gates by solving the equation set,

an alternative way to quickly get the energy function for all basic gates is to find the relation

between the hyperneural networks for different gates. This formulation finds a non-linear

pseudo-Boolean function for an n input gate directly from its logic description. To avoid

confusion with the concept given in (1), we define the term as maximum return function (MRF),
F„ate. (We have used F te = - E„atela, where a>\.) Observe the following (in Table II)-

(a) the expression (2Vi+2V2-l) represents a threshold function for the OR or NOR gate,

(b) for the XOR or XNOR gate, the threshold function is (2Vi+2V2-4V4-l) , and
(c) a gate and its single variable inversion have the same maximum return function but for V3

and (1- V3) factor.

To enhance the rate of convergence of a search technique, it is advisable to use scaling

and change of variables if interaction between the variables can be eliminated . A function g(x)

is said to be non-interacting if it is separable in its variables. In what follows, we discuss the

substitutions for V['s in Table II that help achieve variable separability and develop a theory for

hyperneural networks. Let Vj = 1, V2
= xlx2> anc* ^3 = y in F/^jy where xi, xi, and y are

binary variables. Then, FÄND = y^x^-l) -Xi*2- Substituting Vj = 0, V2 = (1 —Xj)(l -x2),

and V3 = (1 -y), the MRP for an OR gate is obtained. These substitutions consider the enable

inputs 1 (0) for AND and NAND (OR and NOR), and the algebraic function showing the func-
tionality of a gate . For an XOR gate, V± = xj(l-x2), V2= (l-xi)x2, V3 = y, and V4 = 0 will give

FIOÄ=y[2x,(l-2x2) + 2x2-l]-[x,(l-2x2) + x2] (5)

To derive F^QR from the MRF given in Table II, we have used x' = x because x e {0,1}. Here,

(1-2XJ) changes the logic Xj = 0 (1) to Xj = 1 (-1). Note the similarity between the F„ate

expressions with (2).

Lemma 1 : A generalized expression for the maximum return function is given as
Fgate = z(2/-D-/ (6)

where f (z) is the function realized by (output of) the gate and is the right (left) side of

functionality equations in Table II. ■
Lemma 1 is quite general as it helps obtain expressions for maximum return function for buffer,

NOT, and fan-out lines as follows. Here m is the number of fan-out branches.
Fbuffer = y(2x-D-x
FNOT = d-y)(2x-l)-x (7)
Ffan-out= Vi(2x-l)-x; for/ = l,...,m

Lemma 2 : (a) For a consistent state, Fgate= 0.

(b) For an inconsistent state, Fgate is negative.

Proof, (a) When z =/, equation (6) gives Fgate = 2/(/-l). Substituting/= 0 or 1 proves it.

(b) When z ^f, then z = 1 (0) and/= 0 (1). In either case Fgate is negative ■
Lemma 3 : The consistent states of a gate is generated by maximizing Fgate =-\z-f\. ■

Method

There are three steps to generate test pattern for a given single stuck-at fault of a circuit

under HNN model: circuit modeling, fault injection, and consistent state finding. Given a circuit,
the maximum return function of each gate Fgate is first constructed using Lemma 3. The energy

function of the circuit, eckt, is the summation of the MRFs of all the gates.
£ckt = X Fga[e (8)

all the gates

A variable assignment satisfying that £ckt = 0 is a consistent state of the circuit. The set of all the

consistent states is a logic specification of the circuit.

Circuit modeling constructs the energy function for a given circuit in a manner we

discussed above. Fault is injected into the circuit by constructing a fault circuit from the original

circuit, adding a XOR gate for each primary output to force the outputs from both circuits

differing from each other at least one primary output. Precisely, these are done by -

1) For all the line / along the paths from the fault site to all primary outputs, assign an extra

variable x\.

2) For all the gate along the paths from the fault site to all primary outputs, get the maximum
return function for the gate in fault circuit F'gate.

3) For each primary output yt and its fault variable y\, add a XOR gate. The outputs of all these

XOR gates goes to an additional OR gate whose output is forced to be 1.

4) Sum all the MRFs getting from steps 2 and 3, and those describing the fault-free circuit. The
result is the return function Fgale for the fault injected model.

5) For the variable xi and xj at the fault site, x\ is assigned the fault value, and x[is assigned

the opposite value to the fault.

The consistent states of the fault injected model satisfy F'gaK = 0. Since X = 0 and Y = 0

implies X+Y = 0, a solution for Fga!e = 0 is found by solving equation set jF= 0 for all jFin Fgate.

To help achieve this, we use satisfactionability approach. We begin by assigning 0 (1) to one of

the variables (using heuristics, given below), then simplify the equation set. If no contradiction

(viz. 1 = 0) is found, we pick up another variable and assign a value to it. This is done repeatedly

until a variable assignment that satisfies the equation set is found. In case of contradiction, we

backtrack to a previously used variable. Following heuristics can be used to assign a variable:

a. Assign a logic value to a frequently occurring primary input or an internal line variable. This

is achieved by obtaining a weight reflecting the number of times the variable occurs.

b. Consider only primary input variables for assignment using the descending order of their

weights.

c. Assign primary inputs randomly.

d. Use simulated annealing to generate the input assignments.

Results, given below, are obtained with heuristic b which is a PODEM like strategy. It is

different with the conventional PODEM in the sense that our HNN representation relies on a

different theoretical foundation. By assigning logic values to neurons, we try to deterministically

search for a zero energy state of the HNN i.e., the solution for the equation set J. Further, we

apply a symbolic manipulation where some variables in the system are replaced by other

variables. When these replacements occur, the variable-occurrence accounting is altered and the

assignment ordering is, thus, dynamically changed.

Experimental Results

We coded our technique and tested it for Schneider, EC AT, C17, SN5483, and SN54181

circuits on the Sun SPARC 10/41 workstation. Table III summarizes the results using circuit

^PSflülP^™^^^^^^^^^—^—-?■■. I. „Mil

F

specifications, testable and redundant faults, fault coverage, and average time needed to test the

circuit. In all the cases, our method and Hopfield model obtain 100% fault coverage. However,

based on average time per fault, HNN method outperforms the existing NN approach. In ;

addition, we have obtained the number of aborted and redundant faults and fault coverage data ;

for ISCAS'85 benchmark circuits. These results are shown in Tables IV and V, respectively. -

For comparison purposes, we have run MODEM (module oriented decision making) that is a

deterministic ATPG approach based on PODEM but having extensions to improve performance.

In Table V, we have borrowed results for PODEM and FAN. It is evident from Tables rv and V \

that our results are comparable to those obtained from some existing approaches. The difference \

in results can be attributed to two reasons. First, the symbolic strategy, used currently with the \

hyperneural network implementation, is responsible for its slack behavior. Second, a possible

reason could be the absence of a sophisticated fault simulator. [Because of these reasons, the

average time per fault in c432 through cl908 circuits is about 0.08 - 0.58 seconds, while in :

c2670 through c7552 it varies between 1- 4 seconds.] Note, an automatic test generation method t-
\

is of practical use if the test pattern generation and fault simulation interact effectively. PODEM t

and FAN results are obtained using a modified concurrent fault simulator while MODEM uses

Mike 2, a very fast state-of-the-art fault simulator approach .

Redundancy Identification and Removal

The redundancy identification and removal (RID) is important not only in combinational

circuits to help improve their testability but also in a combinatorial model such as a fault tree

with repeated events (FTREs) that is used to perform dependability analysis in fault-tolerant sys-

tems. Our technique for RID using HNN employs two steps: First, the maximum return func-

tions of all the gates in the circuit are formulated. Second, value assignment and simplification

procedures are applied to arrive at the result. The proposed algorithm, implemented in C, is run

on SPARC 10 machine for ISCAS'85 benchmark circuits. Tables VI provides the results.

Reference [4] studies other techniques on the topic and gives a comparison with HNN based RID

approach.

Other Related Research
We have also performed research on related topics such as CMOS testing, fault-tree

analysis, evaluating signal probabilities in logic circuits, and fault simulation using pre-and post-

processing. All these efforts were helpful in understanding different aspects of the ATPG

problem.

BIBLIOGRAPHY

[I] S. Rai (1996), "Redundancy removal in combinational circuits using recursive learning",

submitted to ESREL'97.

[2] S. Rai (1996), "A fast approach for estimating signal probabilities in general combinational

circuits", in preparation.

[3] S. Rai and W. Deng (1996), "Hyperneural network - an efficient model for test generation in

digital circuits", IEEE Trans. Computers, vol. 45, No. 1, January, pp. 115-121.

[4] A. Bhosekar, S. Rai, and R. Nath (1995), "Redundancy identification using hyperneural net-

work", 6th Sym. on IC Tech., Systems, and Applications, Singapore, Sept. 6-8, pp. 60 - 64.

A. Bhosekar (M.S. thesis, 1995), Redundancy identification in combinational circuits using

hyperneural network, Dept. of Electrical and Computer Engineering, L.S.U., Baton Rouge.

[5] A. Yellundur and S. Rai (1995), "Evaluating dependability models for fault-tolerant systems

using Mathematica", 1st Int. Conf. on FTS, I.I.T., Madras, India, Dec. 20 - 22, pp. 62-71.

[6] S. Rai (1995), "Evaluating FTREs for dependability measures in fault tolerant systems",

IEEE Trans. Computers, vol. 44, No. 2, February, pp. 275 - 285.

[7] A. Jagannath and S. Rai (1995), "Impact of hardware and software faults on automatic repeat

request schemes - an experimental study", RAMS, Washington DC, pp. 479 - 485.

[8] S. Rai (1994), "A direct approach to obtain tighter bounds for large fault trees with repeated

events", RAMS, Anaheim, CA, pp. 475 - 480.

[9] R. Parthasarathy (M.S. thesis, 1994), New fault models for behavioral fault simulation in

VHDL, Dept. of Electrical and Computer Engineering, L.S.U., Baton Rouge.

[10] M. Davuluri (M.S. thesis, 1994), Improved fault simulation using preprocess and postpro-

cess techniques, Dept. of Electrical and Computer Engineering, L.S.U., Baton Rouge.

[II] K. Biswas and S. Rai (1994), "Testable realization of CMOS combinational circuits for

voltage and current testing", 7th Int. conf. on VLSI Design,.Calcutta, India, pp. 197 - 202.

[12] S. Rai, H. L. Johnson, and V. Ratnam (1993), "NEUDEM: Neural network based decision

making for generating tests in digital circuits", 36th Midwest Symp. on Circuits and Systems,

Detroit, pp. 596-599.

[13] R. Jagdishan (M.S. thesis, 1993), Estimating signal probabilities for testability measure-

ments in general combinational circuits, Dept. of Electrical and Computer Engineering,

L.S.U., Baton Rouge.

[14] Y. Liu (M.S. thesis, 1993), Conservative assessment of complex fault tree models, Dept. of

Electrical and Computer Engineering, L.S.U., Baton Rouge.

[15] K. Biswas (M.S. thesis, 1993), Logic testing of CMOS VLSI circuits, Dept. of Electrical

and Computer Engineering, L.S.U., Baton Rouge.

Figure 1

Table I

vl V2 V3 V4 EQR Expression using (1) EQR Value

0 0 0 0 K 0
0 0 0 1 K -I4 1

0 0 1 0 K -73 1

0 0 1 1 K-/3-/4-734 0

0 1 0 0 K -I2 1

0 1 0 1 K-I2-I4-T24 0

0 1 1 0 K —I-) — [3 — 723 1

0 1 1 1 K -I2 -I3-I4- 723 - 7"24 - 734 - 7234 0

0 0 0 K-Ii 1

0 0 1 K -I{ -I4- 714 0

0 1 0 AT-/1-/3-713 1

0 1 1 K ~h ~ h ~ h ~ T13 ~ T14 ~ r34 - 7*134 0

1 0 0 K -I[- I2 -7J2 1

1 0 1 K -I{ -12 -14 - T[2 - 7J4 - T24 - T124 0

1 1 0 K -Ii -I2-I3- T\2 ~ 7*13 - 7*23 ~ 7"i23 1

1 1 1 K -I[- h ~ h - h ~ T\2 ~ 7l3 - 7l4 ~ 723 ~ 724 - 7*34

-7l23 - r124 - 7l34 - 7"234 - r1234

0

Table IV

Circuit C432 c499 c880 cl355 cl908 c2670 c3540 c5315 c6288 c7552
No. of faults 524 758 942 1574 1879 2747 3428 5350 7744 7550

MODEM 4 8 0 10 12 129 210 144 348 757
HNN 4 0 42 0 15 212 311 83 32 312

Note : The backtrack parameter is selected as 10 in both MODEM and HNN techniques.

10

Table II

* The results help compare our approach with NN based technique.

Table V

Note : The backtrack parameter is selected as 10 in all the techniques.

Table VI

Gate Maximum Return Function, Fgate Output Function

AND V3(2Vl+2V2-3)-VlV2 y = xlx2
NAND ([-V3)(2Vl+2V2-3)-VlV2 1 -y =xix2

OR V3(2Vi+2V2-l)-(Vi+V2+ViV2) 1-y = (l-x1)(i.x2)

NOR (l-V3)(2V1+2V2-l)-(Vi+V2+V1V2) y = (l-
xl)(l-x2)

XOR V3 (2 V!+2V2-4 V4-IMV1+V2+6^4+2^2-5^4-5^4) y =* 4(1-2^2)+ ^
XNOR (l-V3)(2V1+2V2-4V4-l)-(V1+V2+6V4+2VriV2-5ViV4-5V2V4) i-y =

xl(l-2x2) + x2

Table in

Circuits Schneider ECAT C17 SN5483 SN54LS181
of Inputs 4 6 4 9 14
of Outputs 3 1 2 5 8
of Gates 8 9 6 36 65
of Faults 56 46 34 208 388
Redundant Faults 2 8 0 0 0
Testable Faults 54 46 34 208 388
Fault Coverage 100% 100% 100% 100% 100%
Average Time per fault (sec) 0.001 0.0027 0.007 .005 0.0178
* Average Time per fault 0.12 0.43 - 3.3 -

Benchmark Circuit C432 c499 c880 cl355 cl908 c2670 c3540 c5315 c6288 c7552
% Tested

Faults
PODEM 91.5 99.4 100 99.5 99.5 94.6 95.5 98.3 99.5 96.8
MODEM 99.43 98.94 100 99.36 99.63 96.18 95.30 98.06 95.92 90.66

FAN 93.7 97.2 100 97.5 99.3 95.7 95.8 98.9 99.4 98.2
HNN 99.43 100 95.54 100 99.36 94.76 93.64 99.53 100 96.48

Average
fault using

time per
HNN (sec)

0.23 0.08 0.42 0.33 0.58 2.82 2.66 2.81 1.01 4.04

Benchmark circuits C17 C432 C880 C1355 C1908 C2670 C3540 C5315
Number of stems 3 89 125 259 385 454 579 806

Number of Recon-
vergence points

2 92 113 394 250 357 600 799

Number of
Redundancies

identified

TA1 - - - - 4 29 93 20
[B] 0 4 0 8 9 117 137 59
[C] 0 0 0 0 8 40 124 22
[Dl 0 0 0 0 8 41 136 23

Total CPU time, sec with D 0 0.59 1,94 7.93 9.13 15.19 40.63 67.68
Note: [A] is Iyer and Abramovici's paper in Int. Conf. on VLSI Design, Jan 1994, p315; [B] means

Schulz and Auth 's paper in IEEE CAD, July 1989; [C] & [D] refer to two versions of the
proposed HNN based algorithm.

11

